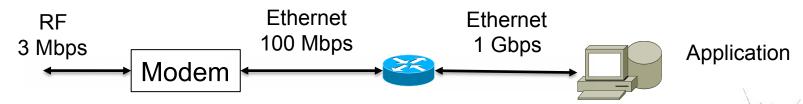


Modem Link-Property Advertisements

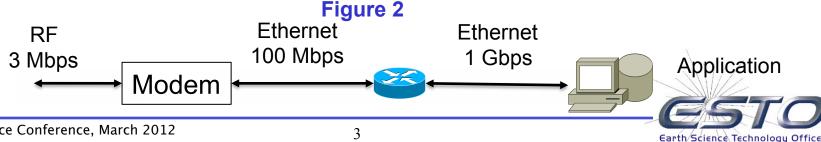
William D. Ivancic Lloyd Wood Dan Shell Daniel Floreani Rajiv Asati

Cognitive Networks and Radios

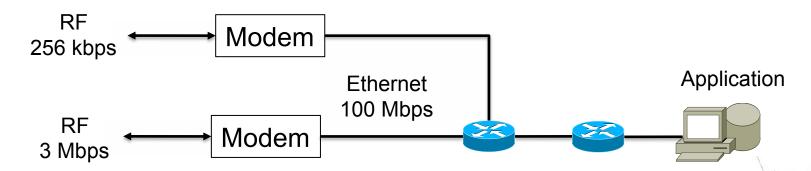

- <u>Autonomous system</u> perceives current conditions, and then plans, decides, and acts on those conditions based on predefined rules and algorithms.
- <u>Cognitive system</u> **LEARNS** from the consequences of its actions and uses this knowledge to improve the future decisions (instead of just predefined rules/algorithms)
 - Feedback is required
 - Need to establish good metrics
 - Learning takes time
- Radio Networks should be cognitive for true adaptability and dynamism and be aware of its environment.
 - Thus, technologies must be developed that expose radio parameters to rest of network and provide methods for adjusting those parameters.
 - Example Modem Link-Property Advertisements

Smart Modems

- Modem's transmitting and receiving link rates can be varied over time due to the following:
 - Adaptive coding
 - Changes in Modulation to suit radio channel characteristics.
 - Changes in transmission rate to suit radio channel characteristics
- Rate mismatch between RF link and Ethernet link.
 - Serial connections are less of a problem as clocks can be controlled by modem (at least the receiving clock)
 - Ethernet connections are becoming standard and result in rate mismatch between the LAN interface and the RF link.

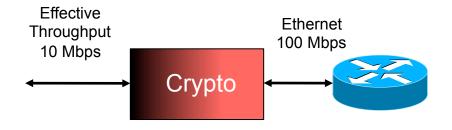


Issue / Problem


- To condition traffic and get the most out of the modem's link capacity, routers & applications need to know the modem's link conditions.
 - Figure 1 corresponds to existing commercial imaging satellites
 - Figure 2 is more generic
- Desire is to have a standard method for the upstream devices (router and host applications) to learn of the link conditions and adjust
 - Link Up/Down Link Unreliable Figure 1 Serial RF Data Rates Link 3 Mbps **Application** Modem

Solution

- Develop a standard protocol that provides link status conditions
 - Should be able to provide wide area network (WAN)
 radio reachback link status to routers and upstream
 devices/applications that may be multiple hops away.
- Uses
 - Applications can adjust to link state
 - Route Optimization
 - Useful for multi-homed systems



Crypto/Router

- Red/Black Separation
- Rate Mismatch Problem
- It is hard to sense the real rates offered through "the system".
 - It is feasible for such devices to work this out on their black side - and the red side and can simply advertise the "offered rate".
 - The Black side obtains knowledge of its downstream link state via modem advertisements, router advertisements, or probes, and pass this on to the red side via approved methods.
 - The red side can then advertise its rate via the LPA protocol.

Strategy

- Released public request for participation to radio system providers and information system manufacturers
- Starting Points
 - RFC-5578, PPP over Ethernet (PPPoE) Extensions for Credit Flow and Link Metrics
 - Informative Document
 - Similar Idea, but very complex with to many parameters that cannot be set well.
 - Dynamic Link Exchange Protocol (DLEP) (draft-ietf-manet-dlep-00)
 - Similar to RFC-5578, but does not utilize PPPoE
 - Router centric
 - Session oriented
 - Link properties advertisement from modem to router (draft-wood-dna-link-properties-advertisement-01)
 - Uses UDP multicast to advertise link characteristics
 - Simple
- Demonstrate usability in C or C++ implementation of Saratoga
 - Listen for on multicast channel to set rate-limit
 - Can test in Global Hawk Protocol Testbed.

Protocol Concepts

- Advertise Modem's link conditions over IP/UDP
 - Link-local IP multicast advertisements from Modem
 - No need for client/server configurations
 - Requires no explicit configuration setup to provide information to connected devices.
 - Easy to Deploy
- Advertise link properties to upstream systems.
 - IPv4 organizational-scoped multicast and IPv6 site-local multicast
 - Requires multicast to be enabled in network
 - Requires approval of a new organizational/site-local multicast type by the Internet Assigned Number Authority (IANA).
 - Miss-configurations of organizational-scoped or site-local multicast could result in advertisements in unforeseen global traffic.
 - Unicast advertisements
 - Requires configuration in the modem to send advertisements to known endpoints.

Protocol Signaling

- Advertisements are sent periodically or as notifications of link-layer events (such as rate changes) when they happen
 - A link rate changes due to a coding change, or the link and its interface go up or down
- The modem should send periodic advertisements about link conditions, in case new devices have been connected
- A device attached to the local link must be able to receive link property advertisements via UDP/IP packets sent to the "all routers" multicast address.
- Other network-attached devices may receive advertisements via IPv4 organizational-scoped multicast and IPv6 site-local multicast or unicast advertisements.

Earth Science Technology Office

Protocol Block Type

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
UDP destination port
   UDP source port
UDP length
                 UDP checksum
Block Type ID (Rate Type 1)
                  Length
no. of links | link rate size | modem flags (15 bits unused) | S
unique modem interface identifier
interface flags |B|F|4|6|U|I|
current link rate (varies) - 32 bits is rate size of 1
                           В
minimum supported rate - 32 bits is rate size of 1
                           В
maximum supported rate - 32 bits is rate size of 1
                           0
IPv4 address of modem's local link interface, if 4 flag set
IPv6 address of modem's local link interface, if 6 flag set
```


Rate Block

- Currently, only one Block Type has been considered, the Rate Block [Slide 11]. Key components of this block type are:
 - The maximum data rate is defined by a 32-bit word corresponding to a limit of 4 Gbps.
 - This format enables one to specify link characteristics simultaneously for both link directions, or separately for the incoming and outgoing links.
 - Link Up / Link Down information is conveyed via the interface flag "U".
- Other possible blocks, not yet defined here, could express measured error rate, current forward errorcoding rate, latency (propagation delay, serialization delay), link MTU size, indicate link-level security mechanisms in use, or provide authentication.

Status

- Internet Draft submitted to Mobile Operations research group (mobopts)
 - Modem Link Properties Advertisement Protocol (draft-ivancic-mobopts-modemlpa-00) expires April 16, 2012
 - Why mobopts → One research topic is to examination of the feasibility of generic mechanisms that allow tighter integration of the link layer with the IP layer for improving handover performance
 - Mobopts has not been very active lately and may recharter, but, this appears to be the most appropriate place to perform this activity

Collaborations

- Anyone or any organization interested in collaborating is welcome – particularly radio developers.
- Google Groups "modemLPA" formed
 - Maillist and archive
 - I3 current members
 - Open to any interested people
 - Contact Will Ivancic (william.d.ivancic@nasa.gov)
- Working with University of Akron
 - Packet Generation of modemLPA protocol for testing
 - Dissector for Wireshark®
 - Possible additions to NASA PERL implementation of Saratoga
- Working with Dr. Shaoen Wu of the University of Southern Mississippi
 - Rate Adaptation on Random Access Wireless Networking
 - Cognitive Wireless Networking Protocols

Summary

- We have presented a simple protocol that can be used to provide upstream devices and applications with downstream link conditions.
- The protocol in this document is described in the context of modem RF link properties, <u>but</u> can also be broadly applied to other scenarios such <u>as</u> cryptographic devices.
- The ability to sense and react to such information is critical for new and developing technologies such as cognitive radios and cognitive networks.

